Clustering

Gebonden Engels 2008 9780470276808
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network–based clustering; kernel–based clustering; sequential data clustering; large–scale data clustering; data visualization and high–dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.

Specificaties

ISBN13:9780470276808
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:368

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

PREFACE.
<p>1. CLUSTER ANALYSIS.</p>
<p>1.1. Classifi cation and Clustering.</p>
<p>1.2. Defi nition of Clusters.</p>
<p>1.3. Clustering Applications.</p>
<p>1.4. Literature of Clustering Algorithms.</p>
<p>1.5. Outline of the Book.</p>
<p>2. PROXIMITY MEASURES.</p>
<p>2.1. Introduction.</p>
<p>2.2. Feature Types and Measurement Levels.</p>
<p>2.3. Defi nition of Proximity Measures.</p>
<p>2.4. Proximity Measures for Continuous Variables.</p>
<p>2.5. Proximity Measures for Discrete Variables.</p>
<p>2.6. Proximity Measures for Mixed Variables.</p>
<p>2.7. Summary.</p>
<p>3. HIERARCHICAL CLUSTERING.<br /> </p>
<p>3.1. Introduction.</p>
<p>3.2. Agglomerative Hierarchical Clustering.</p>
<p>3.3. Divisive Hierarchical Clustering.</p>
<p>3.4. Recent Advances.</p>
<p>3.5. Applications.</p>
<p>3.6. Summary.</p>
<p>4. PARTITIONAL CLUSTERING.</p>
<p>4.1. Introduction.</p>
<p>4.2. Clustering Criteria.</p>
<p>4.3. K–Means Algorithm.</p>
<p>4.4. Mixture Density–Based Clustering.</p>
<p>4.5. Graph Theory–Based Clustering.</p>
<p>4.6. Fuzzy Clustering.</p>
<p>4.7. Search Techniques–Based Clustering Algorithms.</p>
<p>4.8. Applications.</p>
<p>4.9. Summary.</p>
<p>5. NEURAL NETWORK BASED CLUSTERING.</p>
<p>5.1. Introduction.</p>
<p>5.2. Hard Competitive Learning Clustering.</p>
<p>5.3. Soft Competitive Learning Clustering.</p>
<p>5.4. Applications.</p>
<p>5.5. Summary.</p>
<p>6. KERNEL–BASED CLUSTERING.</p>
<p>6.1. Introduction.</p>
<p>6.2. Kernel Principal Component Analysis.</p>
<p>6.3. Squared–Error–Based Clustering with Kernel Functions.</p>
<p>6.4. Support Vector Clustering.</p>
<p>6.5. Applications.</p>
<p>6.6. Summary.</p>
<p>7. SEQUENTIAL DATA CLUSTERING.</p>
<p>7.1. Introduction.</p>
<p>7.2. Sequence Similarity.</p>
<p>7.3. Indirect Sequence Clustering.</p>
<p>7.4. Model–Based Sequence Clustering.<br /> </p>
<p>7.5. Applications Genomic and Biological Sequence.</p>
<p>7.6. Summary.</p>
<p>8. LARGE–SCALE DATA CLUSTERING.</p>
<p>8.1. Introduction.</p>
<p>8.2. Random Sampling Methods.</p>
<p>8.3. Condensation–Based Methods.</p>
<p>8.4. Density–Based Methods.</p>
<p>8.5. Grid–Based Methods.</p>
<p>8.6. Divide and Conquer.</p>
<p>8.7. Incremental Clustering.</p>
<p>8.8. Applications.</p>
<p>8.9. Summary.</p>
<p>9. DATA VISUALIZATION AND HIGH–DIMENSIONAL DATA CLUSTERING.</p>
<p>9.1. Introduction.</p>
<p>9.2. Linear Projection Algorithms.</p>
<p>9.3. Nonlinear Projection Algorithms.</p>
<p>9.4. Projected and Subspace Clustering.</p>
<p>9.5. Applications.</p>
<p>9.6. Summary.</p>
<p>10. CLUSTER VALIDITY.</p>
<p>10.1. Introduction.</p>
<p>10.2. External Criteria.</p>
<p>10.3. Internal Criteria.</p>
<p>10.4. Relative Criteria.</p>
<p>10.5. Summary.</p>
<p>11. CONCLUDING REMARKS.</p>
<p>PROBLEMS.</p>
<p>REFERENCES.</p>
<p>AUTHOR INDEX.</p>
<p>SUBJECT INDEX.</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Clustering